
Chapter 10

Operator Overloading;
Class string

C++ How to Program, 9/e

©1992-2014 by Pearson
Education, Inc. All Rights

Reserved.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

10.1 Introduction

• This chapter shows how to enable C++’s operators to work

with objects—a process called operator overloading.

• One example of an overloaded operator built into C++ is <<,

which is used both as the stream insertion operator and as the

bitwise left-shift operator..

• C++ overloads the addition operator (+) and the subtraction

operator (-) to perform differently, depending on their context

in integer, floating-point and pointer arithmetic with data of

fundamental types.

• You can overload most operators to be used with class

objects—the compiler generates the appropriate code based on

the types of the operands.

 ©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

10.2 Using the Overloaded Operators of

Standard Library Class string

• Figure 10.1 demonstrates many of class string’s overloaded

operators and several other useful member functions, including

empty, substr and at.

• Function empty determines whether a string is empty,

function substr returns a string that represents a portion

of an existing string and function at returns the character

at a specific index in a string (after checking that the index

is in range).

• Chapter 21 presents class string in detail.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

10.2 Using the Overloaded Operators of

Standard Library Class string (cont.)

• Class string’s overloaded equality and relational operators
perform lexicographical comparisons (i.e., like a dictionary
ordering) using the numerical values of the characters (see
Appendix B, ASCII Character Set) in each string.

• Class string provides member function empty to
determine whether a string is empty, which we demonstrate
in line 27.

– Returns true if the string is empty; otherwise, it returns
false.

• Line 36 demonstrates class string’s overloaded += operator
for string concatenation.

– Line 41 demonstrates that a string literal can be appended to a
string object by using operator +=. Line 42 displays the result.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

10.2 Using the Overloaded Operators of

Standard Library Class string (cont.)

• Class string provides member function substr (lines
47 and 52) to return a portion of a string as a string
object.
– The call to substr in line 47 obtains a 14-character substring

(specified by the second argument) of s1 starting at position 0
(specified by the first argument).

– The call to substr in line 52 obtains a substring starting from
position 15 of s1.

– When the second argument is not specified, substr returns the
remainder of the string on which it’s called.

• Lines 64-65 use class string’s overloaded [] operator
can create lvalues that enable new characters to replace
existing characters in s1.
– Class string’s overloaded [] operator does not perform any

bounds checking.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

10.2 Using the Overloaded Operators of

Standard Library Class string (cont.)

• Class string does provide bounds checking

in its member function at, which throws an

exception if its argument is an invalid

subscript.

– If the subscript is valid, function at returns the

character at the specified location as a modifiable

lvalue or a nonmodifiable lvalue (e.g., a const

reference), depending on the context in which the

call appears.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

