Chapter 10

Operator Overloading;

Class string
C++ How to Program, 9/e

©1992-2014 by Pearson
Education, Inc. All Rights
Reserved.

In this chapter you'll:

m Learn how operator overloading can help you craft valuable classes.

m Overload unary and binary operators.

m Convert objects from one class to another class.

m Use overloaded operators and additional features of the string class.

= Create PhoneNumber, Date and Array classes that provide overloaded operators.
m Perform dynamic memory allocation with new and deTete.

m Use keyword exp1i cit to indicate that a constructor cannot be used for implicit
CONVersions.

m Experience a “light-bulb moment” when you'll truly appreciate the elegance and beauty
of the class concept.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

10.1 Introduction

10.2 Using the Overloaded Operators of Standard Library Class string
10.3 Fundamentals of Operator Overloading

10.4 Overloading Binary Operators

10.5 Overloading the Binary Stream Insertion and Stream Extraction
Operators

10.6 Overloading Unary Operators

10.7 Overloading the Unary Prefix and Postfix ++ and -- Operators
10.8 Case Study: A Date Class

10.9 Dynamic Memory Management

10.10 Case Study: Array Class

10.10.1 Using the Array Class
[0.10.2 Array Class Definition

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

10.11 Operators as Member vs. Non-Member Functions
10.12 Converting Between Types

10.13 explicit Constructors and Conversion Operators
10. 14 Overloading the Function Call Operator ()

10.15 Wrap-Up

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

10.1 Introduction

This chapter shows how to enable C++’s operators to work
with objects—a process called operator overloading.

One example of an overloaded operator built into C++ 1S <<,
which is used both as the stream insertion operator and as the
bitwise left-shift operator..

C++ overloads the addition operator (+) and the subtraction
operator (-) to perform differently, depending on their context
In integer, floating-point and pointer arithmetic with data of
fundamental types.

You can overload most operators to be used with class
objects—the compiler generates the appropriate code based on
the types of the operands.

10.2 Using the Overloaded Operators of
Standard Library Class string

 Figure 10.1 demonstrates many of class string’s overloaded
operators and several other useful member functions, including
empty, substrand at.

« Function empty determines whether a string is empty,
function substr returns a string that represents a portion
of an existing string and function at returns the character
at a specific index in a string (after checking that the index
IS In range).

« Chapter 21 presents class string in detail.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

I // Fig. 10.1: figl0_01.cpp

2 // Standard Library string class test program.
3 #include <iostream>

4 #include <string>

5 using namespace std;

6

7 int mainQ)

8 {

9 string sl1();

10 string s2()

11 string s3;

12

13 // test overloaded equality and relational operators
14 cout << << sl << << s2
15 << << 83 <<

16 <<

17 << << (82 ==5s17
18 << << (s2 =517
19 << << (s2 >5s17
20 << << (82 <s17?
21 << << (82 >= 517
22 << << (82 <=5s51 7
23

Fig. 10.1 | Standard Library string class test program. (Part | of 6.)

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

24 // test string member-function empty

25 cout << << endl;

26

27 if (s3.empty(Q))

28 {

29 cout << << endl;
30 s3 = sl; // assign sl to s3

31 cout << << 83 << :

32 } // end if

33

34 // test overloaded string concatenation operator
35 cout << ;

36 sl += s2; // test overloaded concatenation

37 cout << sl;

38

39 // test overloaded string concatenation operator with a C string
40 cout << << endl;
41 sl += ;

42 cout << << sl << ;

43

44 // test string member function substr

45 cout <<

46 <<

47 << sl.substr(,) << H

Fig. 10.1 | Standard Library string class test program. (Part 2 of 6.)

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

48

49 // test substr "to-end-of-string” option

50 cout <<

51 <<

52 << sl.substr() << endl;

53

54 // test copy constructor

55 string s4(sl);

56 cout << << s4 << ;

57

58 // test overloaded copy assignment (=) operator with self-assignment
59 cout << << endl;

60 s4 = s4;

61 cout << << s4 << endl;

62

63 // test using overloaded subscript operator to create lvalue
64 s1[0] = 5

65 sl 6] = ;

66 cout <<

67 << sl << :

68

Fig. 10.1 | Standard Library string class test program. (Part 3 of 6.)

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

69
70
71
72
73
74
75
76
7
78

// test subscript out of range with string member function "at"

try

{
cout << << endl;
sl.at() = : // ERROR: subscript out of range

} // end try

catch (out_of_range &ex)

{
cout << << ex.what() << endl;

} // end catch

79 } // end main

sl is

"happy"; s2 is " birthday"; s3 is

The results of comparing s2 and sl:

s2 ==
s2 =
s2 >
s2 <

sl yields false
sl yields true
sl yields false
sl yields true

Fig. 10.1 | Standard Library string class test program. (Part 4 of 6.)

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

s2 >= sl yields false
s2 <= sl yields true

Testing s3.empty():
s3 is empty; assigning sl to s3;
s3 is "happy"

sl += s2 yields sl = happy birthday

sl += to you" yields
sl = happy birthday to you

The substring of sl starting at location O for
14 characters, sl.substr(0, 14), is:
happy birthday

The substring of sl starting at
location 15, sl.substr(15), is:
to you

Fig. 10.1 | Standard Library string class test program. (Part 5 of 6.)

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

s4 = happy birthday to you

assigning s4 to s4
s4 = happy birthday to you

sl after s1[0] = 'H' and s1[6] = 'B' is: Happy Birthday to you

Attempt to assign 'd' to sl.at(30) yields:
An exception occurred: invalid string position

Fig. 10.1 | Standard Library string class test program. (Part 6 of 6.)

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

10.2 Using the Overloaded Operators of
Standard Library Class string (cont.)

Class string’s overloaded equality and relational operators
perform lexicographical comparisons (i.e., like a dictionary
ordering) using the numerical values of the characters (see
Appendix B, ASCII Character Set) in each string.

Class string provides member function empty to
determine whether a string is empty, which we demonstrate
In line 27.

— Returns true if the string is empty; otherwise, it returns
false.

Line 36 demonstrates class string’s overloaded += operator
for string concatenation.

— Line 41 demonstrates that a string literal can be appended to a
string object by using operator +=. Line 42 displays the result.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

10.2 Using the Overloaded Operators of
Standard Library Class string (cont.)

Class string provides member function substr (lines
47 and 52) to return a portion of a string as a string
object.

— The call to substr in line 47 obtains a 14-character substring
(specified by the second argument) of s1 starting at position O
(specified by the first argument).

— The call to substr in line 52 obtains a substring starting from
position 15 of s1.

— When the second argument is not speC|f|ed substr returns the
remainager of the string on which it’s called.

Lines 64-65 use class string’s overloaded [] operator

can create /values that enable new characters to replace

existing characters in s1.

— Class string’s overloaded [] operator does not perform any
bounds checking.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

10.2 Using the Overloaded Operators of
Standard Library Class string (cont.)

 Class string does provide bounds checking
In Its member function at, which throws an

exception If its argument Is an invalid
subscript.

— If the subscript is valid, function at returns the
character at the specified location as a modifiable
/value or a nonmodifiable /value (e.g., a const
reference), depending on the context in which the
call appears.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

